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Abstract
Two non-isospectral modified KdV equations with self-consistent sources
are derived, which correspond to the time-dependent spectral parameter λ

satisfying λt = λ and λt = λ3, respectively. Gauge transformation between
the first non-isospectral equation (corresponding to λt = λ) and its isospectral
counterpart is given, from which exact solutions and conservation laws for
the non-isospectral one are easily listed. Besides, solutions to the two non-
isospectral modified KdV equations with self-consistent sources are derived by
means of the Hirota method and the Wronskian technique, respectively. Non-
isospectral dynamics and source effects, including one-soliton characteristics
in non-uniform media, two-solitons scattering and special behaviours related to
sources (for example, the ‘ghost’ solitons in the degenerate two-soliton case),
are investigated analytically.

PACS numbers: 02.30.Ik, 05.45.Yv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Soliton equations with self-consistent sources [1–6] have received considerable attention in
recent years. Physically, the sources can result in solitary waves moving with a non-constant
velocity and therefore lead to a variety of dynamics of physical models. For applications, these
kinds of systems are usually used to describe interactions between different solitary waves
and are relevant to some problems of hydrodynamics, solid state physics, plasma physics, etc
[4, 5, 7]. Besides, these kinds of systems also result in many mathematically interesting
treatments and recently they were investigated by means of the inverse scattering transform,
Darboux transformation, bilinear method, etc [8–20].

Non-isospectral evolution equations are also of physical and mathematical importance.
They are related to time-dependent spectral parameters and can describe solitary waves in
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non-uniform media [21, 22]. Meanwhile, the time-dependent spectral parameters will lead to
generalizations [21–25] of those classical methods. In general, when the spectral parameter
λ follows λt = λj where j = 0 or 1, the corresponding non-isospectral equations are
mathematically trivial since there exist transformations between them and their isospectral
counterparts; while when j > 1, such transformation cannot be found [26]. Recently, we
studied some non-isospectral evolution equations by means of the Hirota method and the
Wronskian technique [27–30].

The Hirota method [31, 32] and the Wronskian technique [33] are two efficient approaches
in finding exact solutions for soliton equations. Both of them are based on Hirota’s bilinear
form and consequently are called bilinear methods. Some soliton equations with self-consistent
sources admit bilinear forms and N-soliton solutions in Hirota’s expression. In addition, by
means of a new determinant identity and a new verification procedure, their Wronskian
solutions can also be derived [16–20].

In this paper, we aim to investigate solitons with self-consistent sources in non-uniform
media, or, in other words, non-isospectral soliton equations with self-consistent sources. The
non-isospectral-modified KdV equation with self-consistent sources (mKdVESCS) will be
employed as an example. We first derive two non-isospectral mKdVESCSs corresponding
to different time evolutions of the spectral parameter λ. One is for λt = λ and the
equation we call non-isospectral mKdVESCS-I; the other is for λt = λ3 and we call it
non-isospectral mKdVESCS-II. The non-isospectral mKdVESCS-I is mathematically trivial
(but physically interesting) and there exists a gauge transformation connecting it with the
isospectral mKdVESCS. The transformation is for both equations and Lax pairs and enables
us to get solutions and conservation laws of the non-isospectral mKdVESCS-I from those of the
isospectral mKdVESCS. Besides, the both non-isospectral mKdVESCSs can be transformed
into their bilinear forms by which N-soliton solutions in Hirota’s form and Wronskian’s form
can be obtained.

For an important part of the paper, the dynamics of solitons with sources in non-uniform
media, we focus on the following three points. First, how do the characteristics of solitons,
such as amplitude and velocity, rely on time and sources? Second, can the elastic scattering
appear in the non-uniform media? The final one is whether sources lead to special soliton
behaviours. To investigate two-soliton scattering, we employ an asymptotic analysis in the
coordinate frame co-moving with a single soliton [36]. Besides, as special behaviours related
to sources, the ‘ghost’ solitons in the degenerate two-soliton case are also described in details.

The paper is organized as follows. In section 2 the two non-isospectral mKdVESCSs
are derived and their Lax pairs are given. In section 3 we list the known exact solutions to
the isospectral mKdVESCS and give its infinitely many conservation laws. In section 4 we
first discuss the non-isospectral mKdVESCS-I by means of gauge transformation and bilinear
method (the Hirota method and the Wronskian technique), and then we investigate dynamics.
Finally, in section 5 we derive solutions through bilinear method and investigate dynamics for
the non-isospectral mKdVESCS-II.

2. Lax integrability of two non-isospectral mKdVESCSs

In this section we derive the non-isospectral mKdVESCS-I and II and give their Lax pairs.
The method used here is essentially the same as in [17] and [18].

We start from the well-known ZS–AKNS spectral problem [34, 35](
ϕ1

ϕ2

)
x

= M

(
ϕ1

ϕ2

)
, M =

(−λ q

r λ

)
(2.1)
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coupled with the time evolution(
ϕ1

ϕ2

)
t

= N

(
ϕ1

ϕ2

)
, N =

(
A B

C −A

)
. (2.2)

Their compatibility condition, i.e., the zero-curvature equation,

Mt − Nx + [M,N ] = 0 (2.3)

suggests that

A = ∂−1(r, q)

(−B

C

)
− λtx + A0 (2.4)(

q

r

)
t

= L

(−B

C

)
− 2λ

(−B

C

)
− 2A0σ

(
q

r

)
+ 2λtσ

(
xq

xr

)
, (2.5)

where A0 is a constant and

L = σ∂ + 2

(
q

−r

)
∂−1(r, q), (2.6)

with σ = (−1 0
0 1

)
, ∂ = ∂

∂x
and ∂∂−1 = ∂−1∂ = 1. To get the isospectral and non-isospectral

mKdVESCSs, we take q = −r = u and expand (−B,C)T as(−B

C

)
=

n∑
j=1

(−bj

cj

)
(2λ)n−j +

N∑
j=1

(
αj

2λ + 2λj

+
βj

2λ − 2λj

)
, (2.7)

where we let two-order column vectors αj and βj satisfy

Lαj = −2λjαj , Lβj = 2λjβj , (2.8)

and to meet that we can take

αj = 2λj

(
φ2

2,j

φ2
1,j

)
, βj = −2λj

(
φ2

1,j

φ2
2,j

)
(2.9)

with (
φ1,j

φ2,j

)
x

=
(−λj u

−u λj

)(
φ1,j

φ2,j

)
(2.10)

for j = 1, 2, . . . , N . Thus (2.5) can be rewritten as(
u

−u

)
t

=
n∑

j=1

L

(−bj

cj

)
(2λ)n−j − 2λ

n∑
j=1

(−bj

cj

)
(2λ)n−j + 2A0

(
u

u

)

+ 2λt

(−xu

−xu

)
−

N∑
j=1

(
φ2

1,j + φ2
2,j

−φ2
1,j − φ2

2,j

)
x

. (2.11)

The isospectral mKdVESCS, i.e. [8],

ut + uxxx + 6u2ux +
N∑

j=1

(
φ2

1,j + φ2
2,j

)
x

= 0, (2.12a)

(φ1,j )x = −λjφ1,j + uφ2,j , (φ2,j )x = −uφ1,j + λjφ2,j , (j = 1, 2, . . . , N),

(2.12b)
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can be deduced from (2.11) by taking λt = 0, n = 3, A0 = 1
2 (2λ)3, (−b1, c1)

T = (u, u)T

and (−bj+1, cj+1)
T = L(−bj , cj )

T for j = 1, 2. The corresponding A,B and C in N are
described as [8]

A = 2λu2 + 4λ3 −
N∑

j=1

2λλj

λ2 − λ2
j

φ1,j φ2,j , (2.13a)

B = −4λ2u + 2λux − uxx − 2u3 −
N∑

j=1

(
λjφ

2
2,j

λ + λj

− λjφ
2
1,j

λ − λj

)
, (2.13b)

C = 4λ2u + 2λux + uxx + 2u3 −
N∑

j=1

(
λjφ

2
2,j

λ − λj

− λjφ
2
1,j

λ + λj

)
. (2.13c)

When λt = −µλ where µ is a real constant, from (2.11) we can derive out the non-
isospectral mKdVESCS-I,

ut + uxxx + 6u2ux + µ(xu)x +
N∑

j=1

(
φ2

1,j + φ2
2,j

)
x

= 0, (2.14a)

(φ1,j )x = − λjφ1,j + uφ2,j , (φ2,j )x = − uφ1,j + λjφ2,j , (j = 1, 2, . . . , N).

(2.14b)

To achieve that, we still take n = 3, A0 = 1
2 (2λ)3, (−b1, c1)

T = (u, u)T , (−b2, c2)
T =

L(−b1, c1)
T but (−b3, c3)

T = L(−b2, c2)
T + µ(xu, xu)T . In this case, the corresponding

A,B and C in N are described as

A = 2λu2 + 4λ3 + µλx −
N∑

j=1

2λλj

λ2 − λ2
j

φ1,j φ2,j , (2.15a)

B = −4λ2u + 2λux − uxx − 2u3 − µxv −
N∑

j=1

(
λjφ

2
2,j

λ + λj

− λjφ
2
1,j

λ − λj

)
, (2.15b)

C = 4λ2u + 2λux + uxx + 2u3 + µxv −
N∑

j=1

(
λjφ

2
2,j

λ − λj

− λjφ
2
1,j

λ + λj

)
. (2.15c)

When λt = −4νλ3, we take n = 3, A0 = 0, (−b1, c1)
T = ν(xu, xu)T and

(−bj+1, cj+1)
T = L(−bj , cj )

T for j = 1, 2, then from (2.11) we can get the non-isospectral
mKdVESCS-II,

ut + ν[x(uxxx + 6u2ux) + 3uxx + 4u3 + 2ux∂
−1u2] +

N∑
j=1

(
φ2

1,j + φ2
2,j

)
x

= 0, (2.16a)

(φ1,j )x = −λjφ1,j + uφ2,j , (φ2,j )x = −uφ1,j + λjφ2,j , (j = 1, 2, . . . , N).

(2.16b)
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The corresponding A,B and C in N are described as

A = ν[−4λ3x − 2λxu2 − 2λ∂−1u2] + 2
N∑

j=1

λλj

λ2 − λ2
j

φ1,j φ2,j ,

B = ν[−4xuλ2 − 2(u + xux)λ + 2ux + xuxx − 2xu3 − 2u∂−1u2] +
N∑

j=1

(
λjφ

2
2,j

λ + λj

− λjφ
2
1,j

λ − λj

)
,

C = ν[4xuλ2 − 2(u + xux)λ − 2ux + xuxx + 2xu3 + 2u∂−1u2] +
N∑

j=1

(
λjφ

2
2,j

λ − λj

− λjφ
2
1,j

λ + λj

)
.

3. Some results on the isospectral mKdVESCS

As a reference we list solutions and conservation laws of the isospectral mKdVESCS in this
section.

3.1. Bilinear form and exact solutions

The mKdVESCS (2.12) can be written into the following bilinear form [16]

(
Dt + D3

x

)
f̄ · f = 4i

N∑
j=1

ḡj gj , (3.1a)

D2
xf̄ · f = 0, (3.1b)

Dxḡj · f = −λjgj f̄ , λj ∈ R, (j = 1, 2, . . . , N) (3.1c)

by the dependent variable transformations

u = i

(
ln

f̄

f

)
x

, (3.2a)

φ1,j = ḡj

f̄
+

gj

f
, φ2,j = i

(
ḡj

f̄
− gj

f

)
, (j = 1, 2, . . . , N) , (3.2b)

where f̄ and ḡj are the complex conjugates of f and gj , and D is the well-known Hirota
bilinear operator defined as [31, 32]

Dm
x Dn

t a · b = (∂x − ∂x ′)m(∂t − ∂t ′)
na(x, t)b(x ′, t ′)|x ′=x,t ′=t . (3.3)

By expanding f and gj as

f (x, t) = 1 + f (2)ε2 + f (4)ε4 + · · · , (3.4a)

gj (x, t) = g
(1)
j ε + g

(3)
j ε3 + · · · , (j = 1, 2, . . . , N). (3.4b)

and employing the standard Hirota’s procedure, the N-soliton solution to the isospectral
mKdVESCS has been derived where [16]

f =
∑

µ=0,1

exp


N∑

j=1

µj

(
2ξj +

π

2
i
)

+
∑

1�j<l�N

µjµlAjl

 , (3.5a)
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gh =
√

βh(t) eξh

∑
µ=0,1

µh exp


h−1∑
j=1

µj

(
2ξj +

1

2
Ajh +

π

2
i

)
+

N∑
j=h+1

µj

(
2ξj +

1

2
Ajh − π

2
i

)

+
∑

1�j<l�N,j,l �=h

µjµlAjl

 ,

λj = −kj , eAjl =
(

kj − kl

kj + kl

)2

, (h = 1, 2, . . . N), (3.5b)

in which

ξj = kjx − 4k3
j t −

∫ t

0
βj (z) dz + ξ

(0)
j , (3.6)

kj , ξ
(0)
j are real constants, k1 < k2 < · · · < kN, βj (t) is an arbitrary non-negative continuous

function of t defined on (−∞, +∞), and the sum over µ = 0, 1 refers to each of the µj = 0, 1
for j = 1, 2, . . . , N .

Besides Hirota’s form, the N-soliton solution can also be described in terms of Wronskian.

Theorem 3.1 [16]. The bilinear isospectral mKdVESCS (3.1) admits the following Wronskian
solutions:

f = |N̂ − 1| = W(φ1, φ2, . . . , φN), (3.7a)

gh = Gh(t)|N̂ − 2, τh|, (h = 1, . . . , N), (3.7b)

where τh = (δh,1, δh,2, . . . , δh,N )T ,

Gh(t) =
√√√√βh(t)

h−1∏
l=1

(
k2
h − k2

l

) N∏
l=h+1

(
k2
l − k2

h

)
, (3.8a)

φj = i eξj + (−1)j−1 e−ξj , (3.8b)

ξj is defined as (3.6), and we also assume that k1 < k2 < · · · < kN .

To prove the theorem in [16], we made use of some properties, for example, lemma 3.1
and 3.2 in [16] and the following well-known identity [33]:

|M,a, b||M, c, d| − |M,a, c||M,b, d| + |M,a, d||M,b, c| = 0, (3.9)

where M is an N × (N − 2) matrix and a, b, c and d represent N column vectors.

3.2. Conservation laws

The conservation law of the AKNS isospectral evolution hierarchy equations can be described
as [37]

(−λ + qω)t = (A + Bω)x, (3.10)

where ω = ϕ2

ϕ1
. qω is determined by the Riccati equation

qωx = −(qω)2 + 2λqω + qr (3.11)
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through the expansion

qω =
∞∑

n=1

ωn

(2λ)n
(3.12)

with

ω1 = −qr, ω2 = −qrx, (3.13a)

ωn+1 = q
(ωn

q

)
x

+
n−1∑
j=0

ωjωn−j−1 (n = 2, 3, . . .). (3.13b)

To get the infinitely many conservation laws of the mKdVESCS, we substitute q = −r =
u and (2.15a), (2.15b) into (3.10) and then we have

(uω)t =
2λu2 −

N∑
j=1

2λλj

λ2 − λ2
j

φ1,j φ2,j +

[
−4λ2u + 2λux − uxx − 2u3

−
N∑

j=1

(
λjφ

2
2,j

λ + λj

− λjφ
2
1,j

λ − λj

)]
ω


x

. (3.14)

Then, noting that using the following formulae

1

λ2 − λ2
k

= 1

λ2

∞∑
n=0

(
λk

λ

)2n

,
1

λ ∓ λk

= 1

λ

∞∑
n=0

(±λk

λ

)n

, (|λ| > max
1�k�N

{|λk|}),

(3.15)

we compare the coefficients of same powers of λ and get infinitely many conservation laws

ωj,t = Jj,x, (j = 1, 2, . . .), (3.16)

where {ωj } are conserved densities and {Jj } associated fluxes.
Obviously, the mKdV equation and the mKdVESCS have same conserved densities but

different associated fluxes. The first two non-trivial conserved densities are

�1 = ω1 = u2, (3.17a)

�2 = ω3 = uuxx + u4. (3.17b)

In addition,

�0 = u (3.18)

is also a conserved density.

4. Conservation laws and exact solutions for the non-isospectral mKdVESCS-I

4.1. Gauge transformation, exact solutions and conservation laws

There exists a gauge transformation between the non-isospectral mKdVESCS-I and the
isospectral mKdVESCS. We describe this through the following theorem.
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Theorem 4.1. By the transformation

S = eµtu, X = e−µtx, T = e−3µt − 1

−3µ
, η = λ eµt , ψk = e

3µt

2 φk, (k = 1, 2),

(4.1a)

ηj = λj eµt , ψk,j = e
3µt

2 φk,j , (k = 1, 2, j = 1, 2, . . . , N), (4.1b)

the non-isospectral mKdVESCS-I (2.14) can be transformed to the isospectral mKdVESCS

ST + SXXX + 6S2SX +

 N∑
j=1

ψ2
1,j


X

+

 N∑
j=1

ψ2
2,j


X

= 0, (4.2a)

(ψ1,j )X = −ηjψ1,j + Sψ2,j , (ψ2,j )X = −Sψ1,j + ηjψ2,j (j = 1, 2, . . . , N); (4.2b)

and the Lax pair for the non-isospectral mKdVESCS-I given by (2.1) and (2.2) with
q = −r = u and (2.15) is also transformed to the Lax pair of equation (4.2), i.e.,(

ψ1

ψ2

)
X

=
(−η S

−S η

)(
ψ1

ψ2

)
,

(
ψ1

ψ2

)
T

=
(

A B

C −A

)(
ψ1

ψ2

)
with

A = 2ηS2 + 4η3 −
N∑

j=1

2ηηj

η2 − η2
j

ψ1,jψ2,j ,

B = −4η2S + 2ηSX − SXX − 2S3 −
N∑

j=1

(
ηj

η + ηj

ψ2
2,j − ηj

η − ηj

ψ2
1,j

)
,

C = 4η2S + 2ηSX + SXX + 2S3 −
N∑

j=1

(
ηj

η − ηj

ψ2
2,j − ηj

η + ηj

ψ2
1,j

)
.

The proof can be finished by direct verifications.
Employing the gauge transformation, we can easily get solutions and conservation laws

of the non-isospectral mKdVESCS-I from the known results of the isospectral mKdVESCS
(4.2).

In terms of solutions, for any S(T ,X) being a solution to the isospectral mKdVESCS
(4.2), then

u(t, x) := e−µtS

(
e−3µt − 1

−3µ
, e−µtx

)
(4.4)

solves the non-isospectral mKdVESCS-I. For the conservation laws, if

∂T �(T ,X, S, SX, . . . , ∂
j

XS, . . .) = ∂XJ (T ,X, S, SX, . . . , ∂
j

XS, . . .) (4.5)

is a conservation law for the isospectral mKdVESCS (4.2), where � is a conserved density
and J a flux, then

∂t

[
e−µt�

(
e−3µt − 1

−3µ
, e−µtx, eµtu, e2µtux, . . . , e(j+1)µt ∂j

x u, . . .

)]
= ∂x

[
e−3µtJ

(
e−3µt − 1

−3µ
, e−µtx, eµtu, e2µtux, . . . , e(j+1)µt ∂j

x u, . . .

)
−µx e−µt�

(
e−3µt − 1

−3µ
, e−µtx, eµtu, e2µtux, . . . , e(j+1)µt ∂j

x u, . . .

)]
(4.6)
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is a conservation law for the non-isospectral mKdVESCS-I (2.14). In fact, by noting that

∂X = eµt∂x, ∂T = e3µt (∂t + µx∂x), (4.7)

(4.6) can directly be derived from (4.5). Thus, if

Q =
∫ +∞

−∞
�
(
T ,X, S, SX, . . . , ∂

j

XS, . . .
)

dX (4.8)

is a conserved quantity for the isospectral mKdVESCS (4.2), so is

Q̃ =
∫ +∞

−∞
e−µt�

(
e−3µt − 1

−3µ
, e−µtx, eµtu, e2µtux, . . . , e(j+1)µt ∂j

x u, . . .

)
dx (4.9)

for the non-isospectral mKdVESCS-I (2.14). As a result, from (3.17) and (3.18), the first three
non-trivial conserved densities for the non-isospectral mKdVESCS-I (2.14) are

�̃0 = u, (4.10a)

�̃1 = eµtu2, (4.10b)

�̃2 = e3µtuuxx + e3µtu4. (4.10c)

4.2. Bilinear approach

In this subsection we solve the non-isospectral mKdVESCS-I (2.14) through the Hirota method
and the Wronskian technique.

By the transformation (3.2), the non-isospectral mKdVESCS-I (2.14) can be transformed
into the bilinear form(

Dt + D3
x + µxDx

)
f̄ · f = 4i

N∑
j=1

ḡj gj , (4.11a)

D2
xf̄ · f = 0, (4.11b)

Dxḡj · f = −λj (t)gj f̄ , (j = 1, 2, . . . , N). (4.11c)

Then, expanding f and g as (3.4) and employing the standard Hirota’s procedure, one can
work out the one-soliton solution described through

f = 1 + i e2θ1 , g1 =
√

β1(t) eθ1 , (4.12)

where

θ1 = c1 e−µtx + 4c3
1

e−3µt − 1

3µ
−
∫ t

0
β1(z) dz + θ

(0)
1 , (4.13)

c1 and θ
(0)
1 are arbitrary real constants, β1(t) is an arbitrary non-negative continuous function

of t defined on (−∞, +∞), and we have taken λ1(t) = −c1 e−µt in (4.11c).
When N = 2 we can get a two-soliton solution described through

f = 1 + i(e2θ1 + e2θ2) −
(

c2 − c1

c2 + c1

)2

e2θ1+2θ2 , (4.14a)

g1 =
√

β1(t)

(
eθ1 + i

c1 − c2

c1 + c2
eθ1+2θ2

)
, g2 =

√
β2(t)

(
eθ2 − i

c1 − c2

c1 + c2
e2θ1+θ2

)
, (4.14b)

where λj (t) = −kj (t) = −cj e−µt in (4.11c) and θj is defined as (4.13) but with subscript j

instead of 1.
We can continue to work out the three-soliton solution for N = 3, and further for arbitrary

N we can take λj (t) = −kj (t) in (4.11c) and f and gh can still be described as the general
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formulae (3.5), i.e.,

f =
∑

µ=0,1

exp


N∑

j=1

2µj

(
θj +

π

4
i
)

+
∑

1�j<l�N

µjµlAjl

 , (4.15a)

gh =
√

βh(t) eθh

∑
µ=0,1

µh exp


h−1∑
j=1

µj

(
2θj +

1

2
Ajh +

π

2
i

)
+

N∑
j=h+1

µj

(
2θj +

1

2
Ajh − π

2
i

)

+
∑

1�j<l�N,j,l �=h

µjµlAjl

 , (h = 1, 2, . . . N), (4.15b)

where

kj (t) = cj e−µt , eAjl =
(

kj (t) − kl(t)

kj (t) + kl(t)

)2

=
(

cj − cl

cj + cl

)2

, (4.16a)

θj = cj e−µtx + 4c3
j

e−3µt − 1

3µ
−
∫ t

0
βj (z) dz + θ

(0)
j , (4.16b)

with arbitrary real constants cj and ξ
(0)
j , and the arbitrary non-negative continuous t-dependent

function βj (t).
Besides Hirota’s form, i.e., polynomials of exponential functions, the non-isospectral

mKdVESCS-I (2.14) also admits solutions in Wronskian form.

Theorem 4.2. The following Wronskians

f = |N̂ − 1| = W(φ1, φ2, . . . , φN), (4.17a)

gh = Gh(t)|N̂ − 2, τh|, (h = 1, . . . , N) (4.17b)

solve the bilinear non-isospectral mKdVESCS-I (4.11) where

Gh(t) =
√√√√βh(t)

h−1∏
l=1

(
k2
h(t) − k2

l (t)
) N∏

l=h+1

(
k2
l (t) − k2

h(t)
)
, (4.18a)

φj = i eθj + (−1)j−1 e−θj , (4.18b)

τh = (δh,1, δh,2, . . . , δh,N )T , kj (t) and θj are defined as (4.16a) and (4.16b) respectively, and
λj (t) = −kj (t) in (4.11c).

Proof. By noting that each φj satisfies

φj,x = −kj (t)φ̄j , φj,xx = k2
j (t)φj , (j = 1, 2, . . . , N), (4.19)

(4.11b) and (4.11c) can be verified by taking λj (t) = −kj (t), which is the same as in [16].
So we only need to prove (4.11a)

By virtue of (4.19) we have

f̄ = |φ̄, φ̄(1), . . . , φ̄(N−1)| =
N∏

j=1

−1

kj (t)
|φ(1), . . . , φ(N)| = B|Ñ |, B = (−1)N

N∏
j=1

1

kj (t)
,

(4.20)



A modified KdV equation with self-consistent sources in non-uniform media and soliton dynamics 14637

where Ñ − j indicates the set of consecutive columns 1, 2, . . . , N − j . Then

fx = |N̂ − 2, N |, fxx = |N̂ − 3, N − 1, N | + |N̂ − 2, N + 1|,
fxxx = |N̂ − 4, N − 2, N − 1, N | + 2|N̂ − 3, N − 1, N + 1| + |N̂ − 2, N + 2|,

f̄ x = B|Ñ − 1, N + 1|, f̄ xx = B|Ñ − 2, N,N + 1| + B|Ñ − 1, N + 2|,

f̄ xxx = B|Ñ − 3, N − 1, N,N + 1| + 2B|Ñ − 2, N,N + 2| + B|Ñ − 1, N + 3|.
Besides (4.19), φj satisfies

φj,t = −4φj,xxx − µxφj,x + βj (t)φ̄j (4.21)

for each j = 1, 2, . . . , N , which leads to

ft = −4(|N̂ − 4, N − 2, N − 1, N | − |N̂ − 3, N − 1, N + 1| + |N̂ − 2, N + 2|)
− xµ|N̂ − 2, N | − (N − 1)N

2
|N̂ − 1|

−
N∑

j=1

βj (t)

N∑
l=1

(−1)j+l∂ l−1(ieθj − (−1)j−1 e−θj )Aj,l ,

and

f̄ t = −4B(|Ñ − 3, N − 1, N,N + 1| − |Ñ − 2, N,N + 2| + |Ñ − 1, N + 3|)
−Bxµ|Ñ − 1, N + 1| − (N − 1)N

2
B|Ñ |

+
N∑

j=1

βj (t)

N∑
l=1

(−1)j+l∂ l−1(ieθj + (−1)j−1 e−θj )Āj,l ,

where Aj,l is the cofactor of f .
Then, with these derivatives of f in hand, by employing the same treatment for βj (t) for

the isospectral mKdVESCS given in [16], the left-hand side of (4.11a) can be written as

−6B(−|0, Ñ − 3, N − 1, N + 1||Ñ − 3, N − 1, N − 2, N | − |Ñ − 3, N − 1, N,N + 1|
× |0, Ñ − 3, N − 1, N − 2| + |Ñ − 3, N − 1, N − 2, N + 1|
× |0, Ñ − 3, N − 1, N |) − 6B(−|Ñ − 2, N − 1, N ||0, Ñ − 2, N + 2|
+ |Ñ − 2, N − 1, N + 2||0, Ñ − 2, N | − |Ñ − 2, N,N + 2||0, Ñ − 2, N − 1|)

+ 2i
N∑

j=1

(−1)j−1βj (t)

N∑
l=1

N∑
h=1

(−1)l+hkl+h−2
j (t)[(−1)l−1 + (−1)h−1]Āj,lAj,h.

Further by means of equality (3.9), it goes to

2i
N∑

j=1

(−1)j−1βj (t)

N∑
l=1

N∑
h=1

(−1)l+hkl+h−2
j (t)[(−1)l−1 + (−1)h−1]Āj,lAj,h.

Then, by referring to the proof for the Wronskian solution to the isospectral mKdVESCS in
[16], we immediately reach the right-hand side of (4.11a) if taking gh to be defined as (4.17b).

Thus, we complete the proof. �

Finally, we note that if setting c1 < c2 < · · · < cN and employing the similar procedure as
given in [16], it can be shown that the Wronskians f and gh given by (4.17a) lead to the same
solution of the non-isospectral mKdVSCS-I as the Hirota form (4.15) does.
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Figure 1. Shape and motion of one-soliton of the non-isospectral mKdVESCS-I. (a) A stationary
soliton (−u) given by (4.22) for µ = 0.1, c1 = −0.5, β1(t) = −4c3

1 e−3µt and θ
(0)
1 = 0. (b) A

moving soliton given by (4.22) for µ = 0.1, c1 = −0.5, β1(t) = 1 − sin 2t and θ
(0)
1 = 0.

4.3. Dynamics

Now we consider one-soliton characteristics and two-soliton scattering.

4.3.1. One-soliton characteristics. From (3.2) and (4.12) we have the one-soliton

u = 2c1 e−µt sech 2θ1, (4.22)

and the corresponding sources

φ1,1 =
√

β1(t) e−θ1 sech 2θ1, φ2,1 = −
√

β1(t) eθ1 sech 2θ1, (4.23)

where θ1 is given by (4.13).
(4.22) provides a soliton travelling with a time-dependent amplitude 2|c1| e−µt and top

trace

x(t) = eµt

∫ t

0

(
β1(z)

c1
+ 4c2

1 e−3µz

)
dz − θ

(0)
1

c1
eµt , (4.24)

or velocity

x ′(t) = d

dt
x(t) = eµt

3c1

(
4c3

1 + 8c3
1 e−3µt − 3µθ

(0)
1 + 3β1(t) + 3µ

∫ t

0
β1(z) dz

)
. (4.25)

Noting that
∫ +∞
−∞ u dx is a conserved quantity of the non-isospectral mKdVESCS-I, although

when µ > 0 the amplitude of (4.22) decreases as t → +∞, the soliton u is not damped and
the wave becomes wider and wider. The non-negative function β1(t) plays the role of source
and it changes the velocity of the soliton but not the shape. We can have a variety of travelling
trajectories by choosing different β1(t). One such special case is that when c1 < 0, µθ

(0)
1 � 0

and β1(t) = −4c3
1 e−3µt + µθ

(0)
1 e−µt , (4.25) turns out to be zero, and we will have a stationary

soliton with the top line x ≡ − θ
(0)
1
c1

, as described in figure 1(a).

4.3.2. Two-soliton scattering. When f, g1 and g2 are defined by (4.14), (3.2a) provides the
two-soliton solution and describes interactions between two solitons. Let us call these two
solitons θ1-soliton and θ2-soliton for convenience. (3.2b) provides the corresponding sources.

Although the non-isospectral mKdVESCS-I describes solitons in non-uniform media, its
solitons can scatter elastically under some conditions, as shown in figure 2(a).

In what follows we set |c2| > |c1| > 0 and discuss the two-soliton scattering in detail.
We first suppose that c2 > c1 > 0 and∫ t

0

[
β1(t)

c1
− β2(t)

c2
+ 4
(
c2

1 − c2
2

)
e−3µt

]
dt → ∓∞, as t → ±∞. (4.26)
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Figure 2. Two-soliton scattering of the non-isospectral mKdVESCS-I. The shape and motion
of the two-soliton solution (−u) given by (3.2) and (4.14a) for µ = 0.06, c1 = −0.5, c2 =
−0.4, β1(t) = 0.15, β1(t) = 1 − sin 2t and θ

(0)
1 = θ

(0)
2 = 0.

We also straighten the travelling trajectories of θj -soliton and introduce

X = e−µtx −
∫ t

0

(
β1(t)

c1
+ 4c2

1 e−3µt

)
dt +

θ
(0)
1

c1
, (4.27)

Y = e−µtx −
∫ t

0

(
β2(t)

c2
+ 4c2

2 e−3µt

)
dt +

θ
(0)
2

c2
. (4.28)

Then, we consider these two solitons in the coordinate frame (X, t). If the frame co-moves
with θ1-soliton, i.e., θ1 = c1X stays constant, we have

θ2 = c2X + c2

∫ t

0

[
β1(t)

c1
− β2(t)

c2
+ 4
(
c2

1 − c2
2

)
e−3µt

]
dt

+ θ
(0)
2 − c2

c1
θ

(0)
1 → ∓∞, as t → ±∞, (4.29)

provided (4.26) is satisfied. That suggests

u = i

(
ln

f̄

f

)
X

· ∂X

∂x
→


2c1 e−µt sech 2θ1, t → +∞,

2c1 e−µt sech 2

(
θ1 + ln

c2 − c1

c2 + c1

)
, t → −∞.

Thus we have extracted out the initial and final states of θ1-soliton, and it then follows
that θ1-soliton gets a leftward phase shift − 1

c1
ln c2−c1

c2+c1
with respect to the frame (X, t) after

interaction. Similarly, we consider the two solitons in the coordinate frame (Y, t) co-moving
with θ2-soliton where we let θ2 stay constant and t → ±∞. We have

θ1 = c1Y − c1

∫ t

0

[
β1(t)

c1
− β2(t)

c2
+ 4
(
c2

1 − c2
2

)
e−3µt

]
dt + θ

(0)
1 − c1

c2
θ

(0)
2 → ±∞,

as t → ±∞, (4.30)

still under condition (4.26), and further

u = i

(
ln

f̄

f

)
Y

· ∂Y

∂x
→

2c2 e−µt sech 2

(
θ2 + ln

c2 − c1

c2 + c1

)
, t → +∞,

2c2 e−µt sech 2θ2, t → −∞.

That means θ2-soliton gets a rightward phase shift − 1
c2

ln c2−c1
c2+c1

with respect to the frame (Y, t)

after interaction.
After similar discussions for other cases of |c2| > |c1| > 0, we reach the following result.
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Figure 3. The degenerate case (c1 = c2) of two-soliton interactions of the non-isospectral
mKdVESCS-I. (a) The shape and motion of the solution (−u) given by (3.2a) and (4.32)
with µ = 0.05, c1 = c2 = −0.5, β1(t) = 0.1 − 4c3

1 e−3µt , β2(t) = 1 − 4c3
1 e−3µt and

θ
(0)
1 = θ

(0)
2 = 0. (b) Thw shape and motion of the solution (−u) given by (3.2a) and (4.32)

with µ = 0.05, c1 = c2 = −0.5, β1(t) = −4c3
1 e−3µt , β2(t) = 1 − sin 2t and θ

(0)
1 = θ

(0)
2 = 0.

Theorem 4.3. There will be scattering between two solitons with sources defined by (3.2a)
and (4.14a) when they satisfy (4.26) and |c2| > |c1| > 0. After scattering θ1-soliton gets a
leftward phase shift

∣∣ 1
c1

ln c2−c1
c2+c1

∣∣ in the frame (X, t) and θ2-soliton gets a rightward phase shift∣∣ 1
c2

ln c2−c1
c2+c1

∣∣ in the frame (Y, t). If, instead of (4.26),∫ t

0

[
β1(t)

c1
− β2(t)

c2
+ 4
(
c2

1 − c2
2

)
e−3µt

]
dt → ±∞, as t → ±∞, (|c2| > |c1| > 0),

(4.31)

then the soliton scattering also exists while after scattering θ1-soliton gets a rightward phase
shift

∣∣ 1
c1

ln c2−c1
c2+c1

∣∣ in the frame (X, t) and θ2-soliton gets a leftward phase shift
∣∣ 1
c2

ln c2−c1
c2+c1

∣∣ in
the frame (Y, t).

In the following we consider the degenerate case (c1 = c2) of two-soliton interactions. In
this case,

f = 1 + i(e2θ1 + e2θ2), (4.32)

gj = √βj (t) eθj , (j = 1, 2), (4.33)

where

θj = c1 e−µtx + 4c3
1

e−3µt − 1

3µ
−
∫ t

0
βj (z) dz + θ

(0)
j , (j = 1, 2). (4.34)

This seems essentially to be an one-soliton with a special source, but we would like to look at
it as a degenerate two-soliton case for it has two different source representatives g1 and g2.

Figure 3(a) and (b) describe the special behaviours of such degenerate two-soliton
solutions, respectively, where the two solitons travel first with their original sources and
then suddenly with other different sources. Corresponding to the ‘ghost’ solitons of the
Hirota–Satsuma equation [38, 36], in our case, the soliton u also shows ‘ghost’ behaviours.

Let us give more details in the following. Suppose that βj (t) satisfy∫ t

0
(β1(t) − β2(t)) dt → ∓∞, as t → ±∞ (4.35)

and we consider the following coordinate frame co-moving with θ1-soliton,(
X = e−µtx −

∫ t

0

(
β1(t)

c1
+ 4c2

1 e−3µt

)
dt +

θ
(0)
1

c1
, t

)
, (4.36)
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where θ1 stays constant but, due to (4.35),

θ2 = c1X +
∫ t

0
(β1(t) − β2(t)) dt + θ

(0)
2 − θ

(0)
1 → ∓∞, as t → ±∞. (4.37)

It then follows that

u →
{

2c1 e−µtsech(2θ1), t → +∞,

0, t → −∞,

which means θ1-soliton does not exist initially but appears finally. Similarly, under the frame(
Y = e−µtx −

∫ t

0

(
β2(t)

c1
+ 4c2

1 e−3µt

)
dt +

θ
(0)
2

c1
, t

)
(4.38)

which co-moves with θ2-soliton, we have

u →
{

0, t → +∞,

2c1 e−µtsech(2θ2), t → −∞,

which means θ2-soliton exists initially but disappears finally.
Similar results can be obtained for βj (t) satisfying∫ t

0
(β1(t) − β2(t)) dt → ±∞, as t → ±∞. (4.39)

Thus, we have shown how the sources play roles in the degenerate two-soliton case.

5. The non-isospectral mKdVESCS-II

In this section, we first derive exact solutions to the non-isospectral mKdVESCS-II via the
Hirota method and the Wronskian technique. Then we will investigate dynamics of the
solutions obtained.

5.1. Bilinear form and the Hirota method

Let us first transform the non-isospectral mKdVESCS-II (2.16) into its following bilinear
form:

(
Dt + xνD3

x

)
f̄ · f + 2ν(f f̄ xx − f̄ fxx) = 4i

N∑
j=1

ḡj gj , (5.1a)

D2
xf̄ · f = 0, (5.1b)

Dxḡj · f = −λj (t)gj f̄ , (j = 1, 2, . . . , N), (5.1c)

where the transformation we used is still (3.2).
Expanding f and gh as (3.4), we can derive multi-soliton solutions following Hirota’s

approach. For N = 1, one soliton can be described through

f = 1 + i e2̃ζ1 , g1 =
√

β1(t) eζ̃1 , (5.2)

where

ζ̃1 = k1(t)x −
∫ t

0

(
β1(z) +

4ν

8νz + c1

)
dz + ζ̃

(0)
1 , k1(t) = 1√

8νt + c1
, νt > −c1

8
,

(5.3)
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with arbitrary real constants c1 > 0 and ζ̃
(0)
1 and the arbitrary non-negative continuous time-

dependent function β1(t); and we have taken λ1(t) = −k1(t) in (5.1c).
For N = 2, we can obtain the two-soliton solution which is described through

f = 1 + i(e2̃ζ1 + e2̃ζ2) −
(

k1(t) − k2(t)

k1(t) + k2(t)

)2

e2̃ζ1+2̃ζ2 , (5.4a)

g1 =
√

β1(t) eζ̃1

(
1 + i

k1(t) − k2(t)

k1(t) + k2(t)
e2̃ζ2

)
, g2 =

√
β2(t) eζ̃2

(
1 − i

k1(t) − k2(t)

k1(t) + k2(t)
e2̃ζ1

)
.

(5.4b)

where we take λj (t) = −kj (t) in (5.1c) and

ζ̃j = kj (t)x −
∫ t

0

(
βj (z) +

4ν

8νz + cj

)
dz + ζ̃

(0)
j , kj (t) = 1√

8νt + cj

, (5.5)

with arbitrary real constants cj > 0 and ζ̃
(0)
j and the arbitrary non-negative continuous time-

dependent function βj (t).
For arbitrary N, the N-soliton solution can be obtained by taking λj (t) = −kj (t) in (5.1c)

and

f =
∑

µ=0,1

exp


N∑

j=1

2µj

(̃
ζj +

π i

4

)
+

∑
1�j<l�N

µjµlAjl

 , (5.6a)

gh =
√

βh(t) eζ̃h

∑
µ=0,1

µh exp


h−1∑
j=1

µj

[
2̃ζj +

1

2
Ajh +

π

2
i

]
+

N∑
j=h+1

µj

[
2̃ζj +

1

2
Ajh − π

2
i

]

+
∑

1�j<l�N,j,l �=h

µjµlAjl

 , (h = 1, 2, . . . N), (5.6b)

where ζ̃j is defined as (5.5),

eAjl =
(

kj (t) − kl(t)

kj (t) + kl(t)

)2

=
 1√

8νt+cj

− 1√
8νt+cl

1√
8νt+cj

+ 1√
8νt+cl

2

, (5.7)

and we set c1 � c2 � · · · � cN > 0 without loss of generality and also set νt > − cN

8 to avoid
singularities.

5.2. Solutions in the Wronskian form

Theorem 5.1. The bilinear non-isospectral mKdVESCS-II (5.1) admits the following
Wronskian solutions:

f = |N̂ − 1| = W(φ1, φ2, . . . , φN), (5.8a)

gh = Gh(t)|N̂ − 2, τh|, (h = 1, . . . , N) (5.8b)

where
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Gh(t) =
√√√√βh(t)

h−1∏
l=1

(
k2
h(t) − k2

l (t)
) N∏

l=h+1

(
k2
l (t) − k2

h(t)
)
, (5.9a)

φj = i eζj + (−1)j−1 e−ζj , (5.9b)

τh = (δh,1, δh,2, . . . , δh,N )T , λj (t) = −kj (t) in (5.1c) and ζj are defined as

ζj = kj (t)x −
∫ t

0
βj (z) dz + ζ

(0)
j , kj (t) = 1√

8νt + cj

(5.10)

with arbitrary real constants cj > 0 and ζ
(0)
j and the arbitrary non-negative continuous

time-dependent function βj (t).

To achieve the proof, one should notice that φj satisfies

φj,t = −4xνφj,xxx + βj (t)φ̄j . (5.11)

which implies

∂t

(
∂l
xφj

) ≡ φ
(l)
j,t = −4xνφ

(l+3)
j − 4lνφ

(l+2)
j + βj (t)φ̄

(l)
j

for l = 0, 1, . . ., and this leads to

ft = −4xν(|N̂ − 4, N − 2, N − 1, N | − |N̂ − 3, N − 1, N + 1| + |N̂ − 2, N + 2|)
+ ν[4(N − 2)|N̂ − 3, N − 1, N | − 4(N − 1)|N̂ − 2, N + 1|]

−
N∑

j=1

βj (t)

N∑
l=1

(−1)j+l∂ l−1(ieθj − (−1)j−1 e−θj )Aj,l ,

f̄ t = −4νBx(|Ñ − 3, N − 1, N,N + 1| − |Ñ − 2, N,N + 2| + |Ñ − 1, N + 3|)
− 4νB[−(N − 2)|Ñ − 2, N,N + 1| + (N − 1)|Ñ − 1, N + 2|]

+
N∑

j=1

βj (t)

N∑
l=1

(−1)j+l∂ l−1(ieθj + (−1)j−1 e−θj )Āj,l ,

where Aj,l is the cofactor of f and B = (−1)N
∏N

j=1
1

kj (t)
. Then the rest part of the proof is

similar to the bilinear non-isospectral mKdV-I, so we skip the details.
Before we discuss dynamics, we note that for the non-isospectral mKdVESCS-II

we cannot uniform the solutions in Hirota’s form and Wronskian’s form, as done in
[16] for the isospectral mKdVESCS. In fact, following the procedure in [16] and setting
c1 > c2 > · · · > cN > 0, we can rewrite (5.8a) and (5.8b) as

f = F(t)
∑

µ=0,1

exp


N∑

j=1

2µj

(
ηj +

π i

4

)
+

∑
1�j<l�N

µjµlAjl

 , (5.12a)

gh = F(t)
√

βh(t) eηh

∑
µ=0,1

µh exp


h−1∑
j=1

µj

(
2ηj +

Ajh

2
+

π i

2

)
+

N∑
j=h+1

µj

(
2ηj +

Ajh

2
− π i

2

)

+
∑

1�j<l�N,j,l �=h

µjµlAjl

 , (h = 1, 2, . . . N), (5.12b)
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where

ηj = ζj − 1

4

N∑
l=1,l �=j

Ajl, F (t) =
 N∏

j=1

e−ζj

 ∏
1�j<l�N,

(kl(t) − kj (t))

 , (5.13)

and eAjl is defined as (5.7).

5.3. Dynamics

5.3.1. One-soliton characteristics. When N = 1 from (5.8) we have

f = i eζ1 + e−ζ1 , g1 =
√

β1(t). (5.14)

It then follows from (3.2) that

u = 2√
8νt + c1

sech 2ζ1, (5.15)

φ1,1 =
√

β1(t) e−ζ1 sech 2ζ1, φ2,1 = −
√

β1(t) eζ1 sech 2ζ1, (5.16)

where ζ1 is given by (5.10).
If we start from (5.2), we have

u = 2√
8νt + c1

sech 2̃ζ1, (5.17)

φ1,1 =
√

β1(t) e−ζ̃1 sech 2̃ζ1, φ2,1 = −
√

β1(t)e
ζ̃1 sech 2̃ζ1, (5.18)

where ζ̃1 is given by (5.5). Obviously, when ν > 0 all the u given by (5.17) can also be
obtained from (5.15). So, we would like to consider the Wronskian solution for one soliton in
this part.

(5.15) provides a soliton travelling with a decay amplitude 2√
8νt+c1

(when ν > 0) and the
time-dependent top trace

x(t) =
√

8νt + c1

(∫ t

0
β1(z) dz − ζ

(0)
1

)
, (5.19)

or velocity

x ′(t) = (8νt + c1)β1(t) + 4ν
( ∫ t

0 β1(z) dz − ζ
(0)
1

)
√

8νt + c1
. (5.20)

The non-negative function β1(t) plays the role of source and it changes the velocity of
the soliton but not the shape. The stationary soliton can be obtained when we take νζ

(0)
1 � 0

and β1(t) = 4νζ
(0)
1

√
c1(8νt + c1)

− 3
2 . In this case, x(t) ≡ −ζ

(0)
1

√
c1 and x ′(t) ≡ 0. Figure 4

describes the shape and motion of one soliton.

5.3.2. Two-soliton scattering. Because the two-soliton solution in the Wronskian form
cannot provide a non-trivial degenerate solution, we consider the two-soliton solution in
Hirota’s form in this part, i.e., f, g1 and g2 are given by (5.4).

We first suppose that c1 > c2 > 0 and νt > − c2
8 . In this case, it is not easy to analytically

investigate two-soliton interactions, but they do have elastic scattering. Figure 5(a) exhibits
the elastic interactions of two solitons with decay amplitudes. For comparison we give the
two corresponding single solitons in figure 5(b) and (c).
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Figure 4. The shape and motion of one soliton of the non-isospectral mKdVESCS-II. (a) A

stationary soliton given by (5.15) for ν = 1, c1 = 50, β1(t) = 4νζ
(0)
1

√
c1(8νt+c1)

− 3
2 and ζ

(0)
1 = 0.

(b) The density plot of a moving soliton given by (5.15) for ν = 1, c1 = 50, β1(t) = 1 − sin t and
ζ

(0)
1 = 1, x ∈ [−50, 120], t ∈ [−5, 15] and plot range [−0.3, 0.4]. The grey area denotes zero

value and bright strap denotes positive soliton.
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Figure 5. One-soliton behaviours and two-soliton interactions of the non-isospectral mKdVESCS-
II. (a) The density plot of the two-soliton solution given by (3.2) and (5.4) for ν = 1, c1 = 80, c2 =
60, β1(t) = 0.5 e−0.5t , β2(t) = 0.5 e0.5t , ζ

(0)
1 = −2, ζ

(0)
2 = 6, x ∈ [−80, 100], t ∈ [−7, 10] and

plot range [−0.2, 0.3]. (b) The density plot of the corresponding one soliton given by (5.17)
for ν = 1, c1 = 80, β1(t) = 0.5 e−0.5t , ζ

(0)
1 = −2, x ∈ [−80, 100], t ∈ [−7, 10] and plot

range [−0.2, 0.3]. (c) The density plot of the corresponding one soliton given by (5.17) for
ν = 1, c1 = 60, β1(t) = 0.5 e0.5t , ζ

(0)
1 = 6, x ∈ [−80, 100], t ∈ [−7, 10] and plot range

[−0.2, 0.3]. The grey area denotes zero value and bright straps denote positive solitons.

In the following let us consider the degenerate two-soliton solutions. When c1 = c2 > 0
in (5.4) we have

f = 1 + i(e2̃ζ1 + e2̃ζ2), g1 =
√

β1(t) eζ̃1 , g2 =
√

β2(t) eζ̃2 , (5.21)

where

ζ̃j = x√
8νt + c1

−
∫ t

0

(
βj (z) +

4ν

8νz + c1

)
dz + ζ̃

(0)
j , j = 1, 2.

Figure 6(a) and (b) describe that a single soliton is ‘disturbed’ by an invisible ‘ghost’
soliton. In (c), a soliton travels first with its original source and then suddenly with another
different source.
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Figure 6. The degenerate two-soliton solution (c1 = c2) of the non-isospectral mKdVESCS-II.
(a) The density plot of the degenerate two-soliton solution given by (3.2) and (5.21) for ν = 1, c1 =
c2 = 80, β1(t) = 0.5 e−0.5t , β2(t) = 0.5 e0.5t , ζ̃

(0)
1 = −2, ζ̃

(0)
2 = 6, x ∈ [−80, 100], t ∈ [−7, 10]

and plot range [−0.2, 0.3]. (b) The density plot of the degenerate two-soliton solution given by
(3.2) and (5.21) with same parameters as (a) except ζ̃

(0)
2 = 2 instead of 6. Thus one can see

the existence of ζ̃2-soliton by comparing (a) and (b). (c) The density plot of the degenerate two-
soliton solution given by (3.2) and (5.21) for ν = 1, c1 = c2 = 80, β1(t) = 0.01 e0.5t , β2(t) =
2(1 − sin 1.5t), ζ̃

(0)
1 = 0, ζ̃

(0)
2 = −2, x ∈ [−80, 80], t ∈ [−8, 15] and plot range [−0.2, 0.3]. The

grey area denotes zero value and bright straps denote positive solitons.

To obtain more details for such degenerate case we investigate the asymptotic behaviours.
Suppose that βj (t) satisfy∫ t

0
(β1(t) − β2(t)) dt → −∞, as t → +∞ (5.22)

and the two solitons involved in the degenerate case are called ζ̃1-soliton and ζ̃2-soliton,
respectively. We consider the coordinate frame co-moving with ζ̃1-soliton,(

X = ζ̃1 = x√
8νt + c1

−
∫ t

0

(
β1(z) +

4ν

8νz + c1

)
dz + ζ̃

(0)
1 , t

)
, (5.23)

where ζ̃1 stays zero but

ζ̃2 = ζ̃1 +
∫ t

0
(β1(z) − β2(z)) dz + ζ̃

(0)
2 − ζ̃

(0)
1 → −∞, as t → +∞ (5.24)

due to (5.22). This further gives

u → 2√
8νt + c1

sech 2̃ζ1, t → +∞. (5.25)

Similarly, under the frame(
Y = ζ̃2 = x√

8νt + c2
−
∫ t

0

(
β2(z) +

4ν

8νt + c2

)
dz + ζ̃

(0)
2 , t

)
, (5.26)

which co-moves with ζ̃2-soliton (letting ζ̃2 stay zero), we have

u → 0, t → +∞. (5.27)

Thus we conclude that for the final states of two solitons involved in the degenerate case, one
exists but another disappears under the condition (5.22). Obviously, similar result holds when∫ t

0
(β1(t) − β2(t)) dt → +∞, as t → +∞. (5.28)
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6. Conclusion

In the paper we have investigated non-isospectral dynamics and source effects for the non-
isospectral mKdVESCS-I and the non-isospectral mKdVESCS-II. One-soliton characteristics
of both equations were studied and we have shown how their amplitudes and velocities rely on
time. The sources do not change soliton shapes but can lead to a variety of soliton trajectories.
For the non-isospectral mKdVESCS-I, its two-soliton solutions can exhibit elastic scattering
with phase shifts when the sources satisfy some conditions. This fact can analytically be
realized by extracting the initial and final soliton states by means of the asymptotic analysis
and co-moving coordinate frames. For the non-isospectral mKdVESCS-II, its two-soliton
interaction is too complicated to discuss in an analytic way, but can still scatter elastically
under some conditions. For both equations, one interesting and new soliton behaviour specially
related to sources is the ‘ghost’ solitons which appear in the degenerate two-soliton case.
The typical characteristic for this case is there exists an invisible soliton involved in two-
soliton interactions, and some solitons can suddenly change their sources. We note that
such a degenerate case is trivial for the isospectral mKdV equation and its non-isospectral
counterparts without sources. Although in the present paper we only focused on the non-
isospectral mKdVESCS-I and the non-isospectral mKdVESCS-II, our discussions are general
and can be generalized to other soliton equations with self-consistent sources in non-uniform
media.
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